Topic:Face Sketch Synthesis
What is Face Sketch Synthesis? Face sketch synthesis is the process of generating realistic face sketches from photographs or descriptions.
Papers and Code
Aug 22, 2024
Abstract:The facial sketch synthesis (FSS) model, capable of generating sketch portraits from given facial photographs, holds profound implications across multiple domains, encompassing cross-modal face recognition, entertainment, art, media, among others. However, the production of high-quality sketches remains a formidable task, primarily due to the challenges and flaws associated with three key factors: (1) the scarcity of artist-drawn data, (2) the constraints imposed by limited style types, and (3) the deficiencies of processing input information in existing models. To address these difficulties, we propose a lightweight end-to-end synthesis model that efficiently converts images to corresponding multi-stylized sketches, obviating the necessity for any supplementary inputs (\eg, 3D geometry). In this study, we overcome the issue of data insufficiency by incorporating semi-supervised learning into the training process. Additionally, we employ a feature extraction module and style embeddings to proficiently steer the generative transformer during the iterative prediction of masked image tokens, thus achieving a continuous stylized output that retains facial features accurately in sketches. The extensive experiments demonstrate that our method consistently outperforms previous algorithms across multiple benchmarks, exhibiting a discernible disparity.
Via
Aug 31, 2024
Abstract:Portrait sketching involves capturing identity specific attributes of a real face with abstract lines and shades. Unlike photo-realistic images, a good portrait sketch generation method needs selective attention to detail, making the problem challenging. This paper introduces \textbf{Portrait Sketching StyleGAN (PS-StyleGAN)}, a style transfer approach tailored for portrait sketch synthesis. We leverage the semantic $W+$ latent space of StyleGAN to generate portrait sketches, allowing us to make meaningful edits, like pose and expression alterations, without compromising identity. To achieve this, we propose the use of Attentive Affine transform blocks in our architecture, and a training strategy that allows us to change StyleGAN's output without finetuning it. These blocks learn to modify style latent code by paying attention to both content and style latent features, allowing us to adapt the outputs of StyleGAN in an inversion-consistent manner. Our approach uses only a few paired examples ($\sim 100$) to model a style and has a short training time. We demonstrate PS-StyleGAN's superiority over the current state-of-the-art methods on various datasets, qualitatively and quantitatively.
Via
Aug 16, 2024
Abstract:Sketch, a powerful artistic technique to capture essential visual information about real-world objects, is increasingly gaining attention in the image synthesis field. However, evaluating the quality of synthesized sketches presents unique unsolved challenges. Current evaluation methods for sketch synthesis are inadequate due to the lack of a unified benchmark dataset, over-reliance on classification accuracy for recognizability, and unfair evaluation of sketches with different levels of simplification. To address these issues, we introduce SketchRef, a benchmark dataset comprising 4 categories of reference photos--animals, human faces, human bodies, and common objects--alongside novel evaluation metrics. Considering that classification accuracy is insufficient to measure the structural consistency between a sketch and its reference photo, we propose the mean Object Keypoint Similarity (mOKS) metric, utilizing pose estimation to assess structure-level recognizability. To ensure fair evaluation sketches with different simplification levels, we propose a recognizability calculation method constrained by simplicity. We also collect 8K responses from art enthusiasts, validating the effectiveness of our proposed evaluation methods. We hope this work can provide a comprehensive evaluation of sketch synthesis algorithms, thereby aligning their performance more closely with human understanding.
Via
Feb 22, 2024
Abstract:Semantic image synthesis (SIS) aims to generate realistic images that match given semantic masks. Despite recent advances allowing high-quality results and precise spatial control, they require a massive semantic segmentation dataset for training the models. Instead, we propose to employ a pre-trained unconditional generator and rearrange its feature maps according to proxy masks. The proxy masks are prepared from the feature maps of random samples in the generator by simple clustering. The feature rearranger learns to rearrange original feature maps to match the shape of the proxy masks that are either from the original sample itself or from random samples. Then we introduce a semantic mapper that produces the proxy masks from various input conditions including semantic masks. Our method is versatile across various applications such as free-form spatial editing of real images, sketch-to-photo, and even scribble-to-photo. Experiments validate advantages of our method on a range of datasets: human faces, animal faces, and buildings.
Via
May 01, 2023
Abstract:Face sketch synthesis and reputation have wide range of packages in law enforcement. Despite the amazing progresses had been made in faces cartoon and reputation, maximum current researches regard them as separate responsibilities. On this paper, we propose a semantic neural version approach so that you can address face caricature synthesis and recognition concurrently. We anticipate that faces to be studied are in a frontal pose, with regular lighting and neutral expression, and have no occlusions. To synthesize caricature/image photos, the face vicinity is divided into overlapping patches for gaining knowledge of. The size of the patches decides the scale of local face systems to be found out.
Via
Feb 26, 2023
Abstract:Synthesizing face images from monochrome sketches is one of the most fundamental tasks in the field of image-to-image translation. However, it is still challenging to (1)~make models learn the high-dimensional face features such as geometry and color, and (2)~take into account the characteristics of input sketches. Existing methods often use sketches as indirect inputs (or as auxiliary inputs) to guide the models, resulting in the loss of sketch features or the alteration of geometry information. In this paper, we introduce a Sketch-Guided Latent Diffusion Model (SGLDM), an LDM-based network architect trained on the paired sketch-face dataset. We apply a Multi-Auto-Encoder (AE) to encode the different input sketches from different regions of a face from pixel space to a feature map in latent space, which enables us to reduce the dimension of the sketch input while preserving the geometry-related information of local face details. We build a sketch-face paired dataset based on the existing method that extracts the edge map from an image. We then introduce a Stochastic Region Abstraction (SRA), an approach to augment our dataset to improve the robustness of SGLDM to handle sketch input with arbitrary abstraction. The evaluation study shows that SGLDM can synthesize high-quality face images with different expressions, facial accessories, and hairstyles from various sketches with different abstraction levels.
* 10 pages, 12 figures, and 2 tables, project page:
https://puckikk1202.github.io/difffacesketch2023/
Via
Sep 01, 2023
Abstract:Facial sketch synthesis (FSS) aims to generate a vivid sketch portrait from a given facial photo. Existing FSS methods merely rely on 2D representations of facial semantic or appearance. However, professional human artists usually use outlines or shadings to covey 3D geometry. Thus facial 3D geometry (e.g. depth map) is extremely important for FSS. Besides, different artists may use diverse drawing techniques and create multiple styles of sketches; but the style is globally consistent in a sketch. Inspired by such observations, in this paper, we propose a novel Human-Inspired Dynamic Adaptation (HIDA) method. Specially, we propose to dynamically modulate neuron activations based on a joint consideration of both facial 3D geometry and 2D appearance, as well as globally consistent style control. Besides, we use deformable convolutions at coarse-scales to align deep features, for generating abstract and distinct outlines. Experiments show that HIDA can generate high-quality sketches in multiple styles, and significantly outperforms previous methods, over a large range of challenging faces. Besides, HIDA allows precise style control of the synthesized sketch, and generalizes well to natural scenes and other artistic styles. Our code and results have been released online at: https://github.com/AiArt-HDU/HIDA.
* To appear on ICCV'23
Via
Feb 08, 2022
Abstract:Face sketch synthesis has been widely used in multi-media entertainment and law enforcement. Despite the recent developments in deep neural networks, accurate and realistic face sketch synthesis is still a challenging task due to the diversity and complexity of human faces. Current image-to-image translation-based face sketch synthesis frequently encounters over-fitting problems when it comes to small-scale datasets. To tackle this problem, we present an end-to-end Memory Oriented Style Transfer Network (MOST-Net) for face sketch synthesis which can produce high-fidelity sketches with limited data. Specifically, an external self-supervised dynamic memory module is introduced to capture the domain alignment knowledge in the long term. In this way, our proposed model could obtain the domain-transfer ability by establishing the durable relationship between faces and corresponding sketches on the feature level. Furthermore, we design a novel Memory Refinement Loss (MR Loss) for feature alignment in the memory module, which enhances the accuracy of memory slots in an unsupervised manner. Extensive experiments on the CUFS and the CUFSF datasets show that our MOST-Net achieves state-of-the-art performance, especially in terms of the Structural Similarity Index(SSIM).
* 7 pages, 4 figures
Via
Dec 02, 2021
Abstract:Face sketch generation has attracted much attention in the field of visual computing. However, existing methods either are limited to constrained conditions or heavily rely on various preprocessing steps to deal with in-the-wild cases. In this paper, we argue that accurately perceiving facial region and facial components is crucial for unconstrained sketch synthesis. To this end, we propose a novel Perception-Adaptive Network (PANet), which can generate high-quality face sketches under unconstrained conditions in an end-to-end scheme. Specifically, our PANet is composed of i) a Fully Convolutional Encoder for hierarchical feature extraction, ii) a Face-Adaptive Perceiving Decoder for extracting potential facial region and handling face variations, and iii) a Component-Adaptive Perceiving Module for facial component aware feature representation learning. To facilitate further researches of unconstrained face sketch synthesis, we introduce a new benchmark termed WildSketch, which contains 800 pairs of face photo-sketch with large variations in pose, expression, ethnic origin, background, and illumination. Extensive experiments demonstrate that the proposed method is capable of achieving state-of-the-art performance under both constrained and unconstrained conditions. Our source codes and the WildSketch benchmark are resealed on the project page http://lingboliu.com/unconstrained_face_sketch.html.
* We proposed the first medium-scale benchmark for unconstrained face
sketch synthesis
Via
Jan 05, 2022
Abstract:In recent years, significant progress has been achieved in biphasic face photo-sketch synthesis with the development of Generative Adversarial Network (GAN). Biphasic face photo-sketch synthesis could be applied in wide-ranging fields such as digital entertainment and law enforcement. However, generating realistic photos and distinct sketches suffers from great challenges due to the low quality of sketches and complex photo variations in the real scenes. To this end, we propose a novel Semantic-Driven Generative Adversarial Network to address the above issues, cooperating with the Graph Representation Learning. Specifically, we inject class-wise semantic layouts into the generator to provide style-based spatial supervision for synthesized face photos and sketches. In addition, to improve the fidelity of the generated results, we leverage the semantic layouts to construct two types of Representational Graphs which indicate the intra-class semantic features and inter-class structural features of the synthesized images. Furthermore, we design two types of constraints based on the proposed Representational Graphs which facilitate the preservation of the details in generated face photos and sketches. Moreover, to further enhance the perceptual quality of synthesized images, we propose a novel biphasic training strategy which is dedicated to refine the generated results through Iterative Cycle Training. Extensive experiments are conducted on CUFS and CUFSF datasets to demonstrate the prominent ability of our proposed method which achieves the state-of-the-art performance.
* Under Review. arXiv admin note: text overlap with arXiv:2106.15121
Via